Publications

Top Publications
Types
Authors
From
To
Filtered:
Ordered by year and author
2022
Slijepcevic, D., Horst, F., Lapuschkin, S., Horsak, B., Raberger, A.-M., Kranzl, A., Samek, W., Breitender, C., Schöllhorn, W., & Zeppelzauer, M. (2022). Explaining Machine Learning Models for Clinical Gait Analysis. ACM Transactions on Computing for Healthcare, 3(2), 14:1–14:27. https://doi.org/10/gnt2s9
2021
Bernard, Jürgen, Hutter, M., Sedlmair, M., Zeppelzauer, Matthias, & Munzner, Tamara. (2021). A Taxonomy of Property Measures to Unify Active Learning and Human-centered Approaches to Data Labeling. ACM Transactions on Interactive Intelligent Systems (TiiS), 11(3–4), 1–42. https://doi.org/10/gnt2wf
Dumphart, B., Slijepčević, D., Unglaube, F., Kranzl, A., Baca, A., Zeppelzauer, M., & Horsak, B. (2021). An automated deep learning-based gait event detection algorithm for various pathologies. Gait & Posture, 90, 50–51. https://doi.org/https://doi.org/10.1016/j.gaitpost.2021.09.026
Horsak, B., Simonlehner, M., Schöffer, L., Dumphart, B., Jalaeefar, A., & Husinsky, M. (2021). Overground Walking in a Fully Immersive Virtual Reality: A Comprehensive Study on the Effects on Full-Body Walking Biomechanics. Frontiers in Bioengineering and Biotechnology, 9, 1236. https://doi.org/https://doi.org/10.3389/fbioe.2021.780314
Krondorfer, P., Slijepčević, D., Unglaube, F., Kranzl, A., Breiteneder, C., Zeppelzauer, M., & Horsak, B. (2021). Deep learning-based similarity retrieval in clinical 3D gait analysis. Gait & Posture, 90, 127–128. https://doi.org/https://doi.org/10.1016/j.gaitpost.2021.09.066
Slijepčević, D., Henzl, M., Klausner, L. D., Dam, T., Kieseberg, P., & Zeppelzauer, M. (2021). k‑Anonymity in Practice: How Generalisation and Suppression Affect Machine Learning Classifiers. Computers & Security, 111, 19. https://doi.org/10/gnt2wd
Zielinski, B., Lipinski, M., Juda, M., Zeppelzauer, Matthias, & Dlotko, Pawel. (2021). Persistence Codebooks for Topological Data Analysis. Journal of Artificial Intelligence Review, 54, 1969–2009. https://doi.org/https://doi.org/10.1007/s10462-020-09897-4
2020
Horsak, B., Dumphart, B., Slijepcevic, D., & Zeppelzauer, M. (2020). Explainable Artificial Intelligence (XAI) und ihre Anwendung auf Klassifikationsprobleme in der Ganganalyse. Abstractband Des 3. GAMMA Kongress. 3. GAMMA Kongress, München, Deutschland.
Horsak, B., Slijepcevic, D., Raberger, A.-M., Schwab, C., Worisch, M., & Zeppelzauer, M. (2020). GaitRec, a large-scale ground reaction force dataset of healthy and impaired gait. Scientific Data, 7:143(1), 1–8. https://doi.org/10/gh372d
Horst, F., Slijepcevic, D., Zeppelzauer, M., Raberger, A. M., Lapuschkin, S., Samek, W., Schöllhorn, W. I., Breiteneder, C., & Horsak, B. (2020). Explaining automated gender classification of human gait. Gait & Posture, 81, supplement 1, 159–160. https://doi.org/10/ghr9k6
Iber, M., Lechner, P., Jandl, C., Mader, M., & Reichmann, M. (2020). Auditory augmented process monitoring for cyber physical production systems. Personal and Ubiquitous Computing. https://doi.org/10/ghz24q
Slijepcevic, D., Zeppelzauer, M., Schwab, Caterine, Raberger, A.-M., Breitender, C., & Horsak, B. (2020). Input Representations and Classification Strategies for Automated Human Gait Analysis. Gait & Posture, 76, 198–203. https://doi.org/10/ghz24x
2019
Despotovic, M., Koch, D., Leiber, S., Döller, M., Sakeena, M., & Zeppelzauer, M. (2019). Prediction and analysis of heating energy demand for detached houses by computer vision. Energy & Buildings, 193, 29–35. https://doi.org/10/fsxn
Iber, M., Lechner, P., Jandl, C., Mader, M., & Reichmann, M. (2019). Auditory Augmented Reality for Cyber Physical Production Systems. AudioMostly (AM"19). AudioMostly (AM"19), Nottingham, UNited Kingdom. https://doi.org/10.1145/3356590.3356600}
Seidl, Markus, & Zeppelzauer, Matthias. (2019). Towards Distinction of Rock Art Pecking Styles with a Hybrid 2D/3D Approach. Proceedings of the International Conference on Content-Based Multimedia Indexing (CBMI), 4.
Slijepcevic, D., Raberger, A.-M., Zeppelzauer, M., Dumphart, B., Breiteneder, C., & Horsak, B. (2019). On the usefullness of statistical parameter mapping for feature selection in automated gait classification. Book of Abstracts of the 25th Conference of the European Society of Biomechanics (ESB), 1.
Stoiber, C., Rind, A., Grassinger, F., Gutounig, R., Goldgruber, E., Sedlmair, M., Emrich, S., & Aigner, W. (2019). netflower: Dynamic Network Visualization for Data Journalists. Computer Graphics Forum (EuroVis "19), 38. https://doi.org/10/ghm4jz
Zielinski, B., Lipinski, Michal, Juda, M., Zeppelzauer, M., & Dlotko, Pawel. (2019). Persistence Bag-of-Words for Topological Data Analysis. Proceedings of the International Joint Conference on Artificial Intelligence 2019, 6. https://doi.org/10/ghpp7z
2018
Andrienko, N., Lammarsch, T., Andrienko, G., Fuchs, G., Keim, D. A., Miksch, S., & Rind, A. (2018). Viewing Visual Analytics as Model Building. Computer Graphics Forum, 37(6), 275–299. https://doi.org/10/gdv9s7
Bernard, J., Zeppelzauer, M., Sedlmair, M., & Aigner, W. (2018). VIAL – A Unified Process for Visual-Interactive Labeling. The Visual Computer, 34(1189), 16. https://doi.org/10/gd5hr3