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Abstract—Providing appropriate methods to facilitate the anal-
ysis of time-oriented data is a key issue in many application
domains. In this paper, we focus on the unique role of the
parameter time in the context of visually driven data analysis.
We will discuss three major aspects – visualization, analysis, and
the user. It will be illustrated that it is necessary to consider the
characteristics of time when generating visual representations.
For that purpose we take a look at different types of time
and present visual examples. Integrating visual and analytical
methods has become an increasingly important issue. There-
fore, we present our experiences in temporal data abstraction,
principal component analysis, and clustering of larger volumes
of time-oriented data. The third main aspect we discuss is
supporting user-centered visual analysis. We describe event-based
visualization as a promising means to adapt the visualization
pipeline to needs and tasks of users.

Index Terms—Time-Oriented Data, Visualization, Analysis,
User.

I. INTRODUCTION & MOTIVATION

CONSIDERING the characteristics of data is vital when
designing visual representations. A salient characteristic

is whether or not data are related to time. That time is an
outstanding dimension is reflected by Shneiderman’s Task by
Data Type Taxonomy [1], where temporal data are identified as
one of seven basic data types. Nowadays, time-oriented data
are ubiquitous in many application domains as for example
in business, medicine, history, planning, or project manage-
ment. For a long time visual methods have been successfully
applied to analyze such data. A wide repertoire of interactive
techniques for visualizing datasets with temporal dependencies
is available. However, many current visualization frameworks
have not yet considered time as a special dimension, but rather
as a common quantitative parameter. According to Thomas and
Cook [2] it is in general a problem that “Most visualization
software is developed with incomplete information about the
data and tasks. (. . . ) New methods are needed for constructing
visually based systems that simplify the development process
and result in better targeted applications.”

In this paper, we point out challenges that arise when
visualizing time-oriented data, and take a look at possible
solutions to these challenges. To find solutions, it is absolutely
mandatory to take into account the following three major
aspects:

• Visualization,
• Analysis, and the
• User.
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In Section II, we focus on visualization methods for time-
oriented data. We will show that the term time-oriented data
comprises several types of data with different meanings and
applications. Designing or applying visual representations can
only be successful if one is aware of these different types. This
will be demonstrated with several examples of visualization
techniques that stem from our own work or are available in
literature.

Usually, time-oriented data are large – not only in terms of
the number of data items, but also in terms of the number of
observed attributes. Ordinary visualizations of such data can
lead to overcrowded and cluttered displays, and are therefore
of limited use. Data abstractions can help to gain insight even
into larger datasets. This is the point where analytical methods
come into play. In Section III, we will illustrate (again by
examples) the usefulness of combining visual and analytical
methods particularly related to time-oriented data.

In order to achieve better targeted applications, users and
their tasks and needs must not be neglected, as it is still often
the case in today’s visualization tools. Apparently, interaction
is a key to adapting visual and analytical methods to the user’s
task at hand. However, not all parameters are intuitive and
easy to set. Particularly in cases where complex visual analysis
processes have to be steered, having some form of user support
or guidance turns out to be helpful. Section IV discusses how
such a support can be realized. The basic idea is to find events
in the data and to trigger automatic parameter adjustments.

In the last section (Section V), we will briefly recapitulate
our discussions and derive possible directions for future work
on visual analysis of time-oriented data.

II. VISUALIZING TIME-ORIENTED DATA

When we speak of time-oriented data, we basically mean
data that are somehow connected to time. Certainly, this vague
description is not sufficient when users have to choose or
developers have to devise appropriate visualization methods.
An essential requirement for achieving expressive and effective
visualization is to consider the characteristics of the data
to be presented, which in our case are particularly related
to the dimension time. A lot of work has been done to
formulate the notion of time in many areas of computer sci-
ence, including artificial intelligence, data mining, simulation,
modeling, databases, and more. A theoretical overview along
with many references to fundamental publications is provided
by Hajnicz [3]. However, as she points out, the terminology is
not consistent across the different fields [3], and hence, does
not integrate well with visualization. Therefore, we adapted
the work of Frank [4], where he presents principal orthogonal
design dimensions to characterize different types of times. The
most important criteria from a visualization point of view are
the following:
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Fig. 1. Different visual representations of a time-oriented dataset describing the number of influenza cases over a period of three years – left: Time series
plot (periodic pattern is difficult to discern), center: SpiralGraph encoding 27 days per cycle (improperly parameterized – periodic pattern is hard to see),
right: SpiralGraph encoding 28 days per cycle (properly parameterized – periodic pattern stands out).

• Linear time vs. cyclic time: Linear time assumes a starting
point and defines a linear time domain with data elements
from past to future. On the other hand, many natural
processes are cyclic, e.g., the cycle of the seasons. To
represent such phenomena, a cyclic time domain can be
applied. The ordering of points in a strictly cyclic time
domain is meaningless with respect to a cycle, e.g., winter
comes before summer, but winter also succeeds summer.

• Time points vs. time intervals: Discrete time points de-
scribe time as abstractions comparable to discrete Eu-
clidean points in space. Time points have no duration.
In contrast to that, interval time uses an interval scaled
time domain like days, months, or years. In this case,
data elements are defined for a duration, delimited by
two time points. Both time points and time intervals are
called temporal primitives.

• Ordered time vs. branching time vs. time with multiple
perspectives: Ordered time domains consider things that
happen one after the other. For branching time, multiple
strands of time branch out, which facilitates description
and comparison of alternative scenarios (e.g., for project
planning). This type of time supports decision making
processes where only one alternative will actually happen.
Time with multiple perspectives allows more than one
point of view at observed facts (e.g., eye-witness reports).

Since it is difficult to consider all of the mentioned aspects
in a single visualization technique, the majority of available
visualization methods address specific cases only – mostly
the visualization of linear time dependencies. The approaches
known in literature can basically be differentiated into tech-
niques that visualize time-oriented data and techniques that
visualize time per se. In the first case, the focus is set on
representing data. Mostly quantitative, but also qualitative
time-oriented attributes are represented with respect to a rather
simple time axis (e.g., multivariate data represented with
respect to linear time). The second case focuses on repre-
senting characteristics of the time domain and its temporal
primitives, while only rather simple data representations are
considered (e.g., Gantt charts to represent relations between

time intervals).
It must be stressed that techniques developed for a particular

time characteristic should not be applied to visualize data
that exhibit different characteristics. Doing so can result in
inexpressive or ineffective visual representations, and can lead
to misunderstandings and false interpretations. To support the
data analysis process via adequate visualization methods, it
is therefore crucial to analyze the time characteristics of the
dataset under investigation.

In what follows, we will illustrate the importance of
choosing and parameterizing a visualization method properly
with respect to given time characteristics. We will also give
examples of visualization techniques that are suitable for
different instances of Frank’s taxonomy of types of times as
presented before. Note that the considered time characteristics
are used for illustrative purposes and cannot cover all aspects
of the complexity of the dimension time. Frank’s taxonomy
encompasses more features and besides that, other taxonomies
for characterizing time and visualization techniques for time-
oriented data exist [5], [6], [7], [8]. We do not intend to provide
a comprehensive overview on all aspects of the dimension
time, but instead focus on the importance of considering the
characteristics of time for an integrated visually driven data
analysis.

a) Linear time vs. cyclic time: First, we point out the
crucial influence of linear vs. cyclic time characteristic on the
expressiveness of a visualization. Fig. 1 shows three different
visual representations of the same time-oriented dataset, which
contains the daily number of cases of influenza that occurred in
the northern part of Germany during a period of three years. In
the leftmost figure, a simple time series plot is used. Although
peaks in time can be easily recognized when examining this
representation, cyclic behavior of the data can only be guessed
and it is hard to discern whether repetitive quantitative patterns
in fact do exist. The representation is not particularly helpful
in analyzing data with respect to cyclic temporal patterns.

The Spiral Graph [9] (see also [10], [11]) is a visualiza-
tion technique that focuses on cyclic characteristics of time-
oriented data by using a spirally shaped time axis (see Fig. 1
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Fig. 2. TimeWheel – Multivariate time-oriented data represented using a
TimeWheel – left: a 2D TimeWheel [12], right: the 3D analog [13].

center and right). The main purpose of this technique is the
detection of previously unknown periodic behavior of the data.
This requires appropriate parameterization of the visualization
method. The representation in the center of Fig. 1 is suited for
cyclic time-oriented data, but it is improperly parameterized
with a cycle length of 27 days; a pattern is not clearly
visible. In contrast to that, the rightmost representation in
Fig. 1 is adequately parameterized with a cycle length of 28
days, and immediately reveals a periodic pattern present in
the analyzed data. The continuous differences of the number
of cases between Sundays and Mondays are quite obvious.
Apparently, that pattern will also be visible if the cycle length
is set to 7 or 14 days.

Usually, it is difficult to find suitable parameter settings for
unknown datasets. Therefore, it makes sense to support the
detection of patterns either by applying analytical methods
(see Section III) or by animating smoothly through possible
parameter settings (i.e., different cycle lengths). In the latter
case, periodic behavior of the data becomes immediately
apparent by the emergence of a pattern. When such a pattern is
spotted, the user stops the animation and an interesting cycle
length has been found.

This discussion shows that not only selecting an appropriate
technique is decisive for successful visualization, but also the
proper parameterization of the chosen technique. This also
implies that interaction facilities are needed to allow users
to re-parameterize visualization methods according to their
task at hand. Only then, visualization can take full advantage
of the capabilities of the human perceptual system, e.g., in
recognizing patterns and motion.

b) Time points vs. time intervals: Whether temporal
attributes are conceptually modeled as time points or time
intervals, is another important characteristic that influences the
appropriateness of visualization methods.

Most of the known visualization techniques that represent
time-oriented data consider time points. An example for a tech-
nique particularly suited for point-based time is the TimeWheel
technique [12]. The TimeWheel is a multi-axes representation
for visualizing multivariate data over time (see Fig. 2). This
is achieved by putting a time axis to a prominent position
in the center of the display. A set of axes that encode time-
dependent attributes is circularly arranged around the central
time axis. For each time point in the considered data, lines
descend from the time axis to the corresponding points on each
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Fig. 3. PlanningLines [14] – Project plan represented using PlanningLines,
which allow depiction of temporal uncertainties via special glyphs.

of the attribute axes. The TimeWheel can be rotated to bring
different attributes into the focus. Furthermore, each axis can
be equipped with a slider to zoom into value ranges of interest,
and in particular, to navigate the time axis. Interactive labels
can be activated on demand to facilitate the identification of
data values. Since the TimeWheel uses lines to represent data
for each point in time, it is useful only for multivariate data
that are related to time points; data based on time intervals
cannot be represented.

So far, we have mentioned techniques that visualize quan-
titative data values related to time points. Other approaches
focus on representing temporal primitives and relations among
them (e.g., LifeLines [15] to visualize personal histories, or
the new metaphors for visualizing temporal queries introduced
by Chittaro et al. [16]). A technique particularly suited to
visualize temporal intervals (here used to model activities)
and their uncertainties at a high level of detail are the
PlanningLines [14]. PlanningLines consist of two encapsulated
bars that represent minimum and maximum duration and are
bounded by two caps representing start and end intervals (see
Fig. 3). Apart from allowing the representation of possible
distributions of start, end, and duration of an activity, a second
important issue is addressed by PlanningLines – temporal
uncertainty. Uncertainty might be introduced by explicit spec-
ification usually connected with future planning (e.g., “The
meeting will start at 11 a.m. and will take approximately one
hour” – which means that it is not quite clear when the meeting
will be over) or is implicitly present in cases where data are
given with respect to different temporal granularities (e.g.,
days vs. hours). PlanningLines support interactive zooming
and panning, which is particularly useful for fine-grain plans
with large time scales.

c) Ordered time vs. branching time vs. time with multiple
perspectives: Although Frank’s taxonomy [4] lists branching
time and time with multiple perspectives as relevant types
of time, most techniques for visualizing time-oriented data
consider ordered time only.

An example of a visualization technique that assumes an
ordered collection of time points is the ThemeRiver [17]. It
represents the number of occurrences of particular news topics
in print media. Each topic is displayed as a colored current
that changes its width continuously as it flows through time.
The overall image is a river that comprises all considered
topics (see Fig. 4). The ThemeRiver provides an overview
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Fig. 4. The ThemeRiver [17] – The visual representation uses the metaphor
of a river that flows through time. Currents within the river represent thematic
changes in a document collection.

on what topics were important at certain points in time. Even
though the ThemeRiver was originally invented to visualize
thematic changes in document collections, it is also suitable to
represent other quantitative data. In such cases, it is important
to provide interaction techniques to rearrange the horizontal
position of variables within the river. This is necessary because
variables in the center of the river are perceptually emphasized,
whereas variables represented at the rims of the river diminish
in perceptibility.

The ThemeRiver as well as most visualization techniques
known in literature are not suited to represent branching time
or time with multiple perspectives. The few techniques for
representing these types of time are capable of depicting
only univariate qualitative data (e.g., Decision Chart [18] or
PlanningLines [14]), or even visualize temporal primitives
only; they cannot represent multiple time-oriented variables.
Here, we see the need for advanced techniques to effectively
visualize multivariate data exhibiting these specific time char-
acteristics. This is an interesting direction for future work.

The bottom line of our discussion is that the characteristics
of the parameter time have to be considered when creating
visual representations of time-oriented data. We also indicated
that integrating appropriate interaction methods is a key con-
cern. Interaction is mandatory to allow users to re-parameterize
a visual representation, and interaction is a must to facilitate
different user tasks including navigation in time, directed and
undirected search, comparison, and manipulation. Similar to
what we said about visualization methods, interaction facilities
also need to be user- and task-specific. For example, if the
main task of a user is to compare multiple time-dependent
variables, it makes sense to provide interaction techniques that
allow navigating the time axis or brushing certain data values
in different views (e.g., [19], [20]). In conclusion, only an
adequately chosen and properly parameterized visualization
technique in combination with user- and task-specific interac-
tion methods can fully support the development of insight into
time-oriented data.

III. ANALYZING TIME-ORIENTED DATA

In the preceding section, we have indicated that choosing
appropriate techniques, parameterizing them correctly, and
incorporating useful interaction methods are essential require-
ments to achieve expressive and effective visual representa-
tions. When dealing with large volumes of data, additional
analytical methods have to be included to derive higher levels
of abstraction of the data. A large variety of time-series mining
techniques have been developed in recent years1. Applying
these techniques facilitates the interactive exploration of even
huge datasets by starting with a compact overview image,
which avoids overlapping of data, and then adding more details
interactively [21].

From a visualizer’s perspective, this fundamental procedure
is expressed in Keim’s Visual Analytics Mantra [22]: “Analyze
First - Show the Important - Zoom and Filter, and Analyze
Further - Details on Demand.” Indeed, developing methods
that fully adhere to this mantra (i.e., tightly integrate time-
series mining and visualization) is a challenging task for future
research.

In what follows, we describe our experiences in integrating
visual and analytical methods. We will illustrate the usefulness
of Keim’s mantra by three examples: the concept of temporal
data abstraction, principal component analysis, and clus-
tering. These concepts address different concerns. Temporal
data abstraction reduces value ranges from quantitative values
to qualitative values, which are much easier to understand.
PCA reduces the number of variables by switching the focus
to major trends in the data. Clustering methods reduce the
number of data tuples by finding expressive representatives
for groups of tuples.

A. Temporal Data Abstraction

Temporal attributes are an important aspect in high-
frequency domains or domains where heterogeneous data are
present (e.g., the medical domain, observing human activities
and behavior, or environmental monitoring). The big question
is how huge volumes of continuously assessed data can be
analyzed to ease further decision making. On the one hand,
the data are too large to be interpreted all at once. On the
other hand, the data are more erroneous than usually expected
and some data are missing too. One possibility to tackle these
problems is to apply knowledge-based techniques to derive
qualitative values or patterns of current and past situations,
called data abstraction – a term originally introduced by
Clancey in his classical proposal on heuristic classification
[23]. The objective of data abstraction in general is “to
create an abstraction that conveys key ideas while suppressing
irrelevant details” [24]. The basic idea is to use qualitative
values or patterns, rather than raw data, for further analysis
or visualization processes [25]. This helps in coping with
the complexity of these processes. To compute data abstrac-
tions, several tasks must be conducted (e.g., selecting relevant
information, filtering out unneeded information, performing

1A review of the vast body of work in time-series mining is be-
yond the scope of this paper. A valuable source for more information is
http://www.cs.ucr.edu/˜eamonn/TSDMA/ (accessed March 2007).
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Fig. 5. VIE-VENT’s schemata for data-point transformation [26] of PtcCO2

during intermittent positive pressure ventilation (IPPV, left) and intermittent
mandatory ventilation (IMV, right). The qualitative data point categories are
given in the middle column. For example, a PtcCO2 value of 60 will be
transformed to “substantially above target range (s2)” during IPPV and to
“slightly above target range (s1)” during IMV.

calculations, sorting, and clustering). The consequent next step
is to provide techniques to visualize data abstractions in a user-
and task-specific manner.

Temporal data abstraction represents an important subgroup
where the processed data are time-oriented. We distinguish
basic temporal abstraction methods (e.g., state, gradient,
and rate) and more complex temporal abstraction methods.
The basic abstraction state corresponds to a classification
(or computational transformation) of data values. Gradient
corresponds to the sign of the derivative of a data value,
and rate complies with the magnitude of the derivative dur-
ing an interval (e.g., abstractions: high, decreasing, and fast
for a temperature variable). Basic temporal data abstractions
alone are not always sufficient to deal with time-oriented
data, because these abstractions are unable to tackle shifting
contexts, different expectations concerning the development of
variables, or detection of more complex patterns. Higher-order
temporal abstraction methods are needed to derive unified
qualitative values and patterns. Therefore, we have investigated
methods of complex temporal abstraction.

VIE-VENT [26] addresses context-sensitive and expectation-
guided temporal abstraction methods in a medical application
domain. The developed methods incorporate knowledge about
data points, data intervals, and expected qualitative trend
patterns to arrive at unified qualitative descriptions. They are
based on context-aware schemata for data point transforma-
tion (see Fig. 5) and curve fitting to express the dynamics
of and the reaction to different degrees data abnormalities.
Smoothing and adjustment mechanisms are used to keep qual-
itative descriptions stable in case of shifting contexts or data
oscillating near thresholds. For example, during intermittent
positive pressure ventilation (IPPV), the transformation of the
quantitative value PtcCO2 = 56mmHg results in a qualitative

Fig. 6. VIE-VENT [26] – The user interface of VIE-VENT. The left-hand
side region shows the blood gas measurements, their corresponding qualitative
temporal abstraction on the top and the actual and recommended ventilator
settings below. The right-hand side region gives plots of the most important
variables over the last four hours (e.g., transcutaneously assessed blood gas
measurements and ventilator settings).

PtcCO2 value of “substantially above target range”2. During
intermittent mandatory ventilation (IMV) however, 56mmHg
represent the “target value”. Qualitative PtcCO2 values and
schemata of curve fitting are subsequently used to decide if
the value progression happens too fast, at normal rate, or too
slow (see Fig. 6).

Qualitative descriptions and patterns as derived by temporal
abstraction methods are heavily data dependent. The methods
developed in the VIE-VENT system are one way to deal
with cases of oscillating data where abstractions and hence
interpretations are frequently changing. Another solution is
presented in the The Spread [27]. It implements a time-
oriented data abstraction method to derive steady qualitative
descriptions from oscillating high-frequency data. We distin-
guish the following steps of processing and abstracting the
data:

1) Eliminating data errors. Sometimes up to 40% of the
input data are obviously erroneous, i.e., exceed the limits
of plausible values.

2) Clarifying the curve. Transform the still noisy data into
a steady curve with some additional information about
the distribution of the data along that curve.

3) Qualifying the curve. Abstract quantitative values to
qualitative values like “normal” or “high” and join data

2PtcCO2 = transcutaneous partial pressure of carbon dioxide

Fig. 7. The Spread [27] – The thin line shows the raw data. The red area
depicts the Spread, the blue rectangles represent the derived temporal intervals
of steady qualitative values. Increased oscillation leads to increased width of
the spread, but not to a change of the qualitative value. The lower part of the
figure shows the used parameter settings.
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Fig. 8. Midgaard [28] – Steps of resizing/zooming the representation of a
data stream from a broad overview with qualitative values to the fine structure
with quantitative details (top to bottom).

points with equal qualitative values to time intervals.

The Spread provides parameters to adjust the abstraction
process (e.g., length of time window, permitted gaps, or points
of changing the qualitative value). As an example, consider a
physician who is observing continuously assessed measure-
ments and wants to find time intervals of different qualitative
regions like “PtcCO2 is high for 5 minutes”. When looking
at the raw data, which typically oscillate, the physician will
certainly have difficulties in finding reasonably long time spans
with stable values. The Spread is able to support the physician
in making qualitative assessments of the time intervals she is
interested in (see Fig. 7).

Temporal abstraction methods as provided in VIE-VENT
and The Spread are generic methods that can be used for differ-
ent purposes. In the Midgaard project [28] these methods have
been extended by several visualization techniques to enhance
the understanding of qualitative and quantitative characteristics
of a given time-oriented dataset. The challenges were not only
to support the user in exploring the data with different tasks
in mind, but also to capture as much temporal information as
possible on a limited display space without loss of overview
and details. We provide different levels of abstractions for
time-oriented data. Switching between these levels results in
a smoothly integrated semantic zoom functionality (see Fig. 8
and left-hand side of Fig. 9). Our methods were designed to
allow users to interact with data and time (e.g., browsing and
searching the time axis). The visualization of temporal aspects
comprises three linked time axes (see Fig. 9). The first one

Fig. 9. The user interface of Midgaard [28] – The upper left part shows
different measurements (e.g., blood gas measurements, blood pressure) and
their corresponding temporal abstractions. The right part explains additional
patient’s information and the lower left part explains the time axis interaction:
the selected subrange at the bottom time axis can be moved and rescaled to
pan+zoom the time range shown in the middle and top time axes.

(bottom) provides a fixed overview of the underlying data and
their full temporal range. Selecting a subrange in that time axis
defines the temporal bounds for the second (middle) and the
third (top) time axis. By interactively adjusting the subrange
users can easily zoom and pan in time.

The described basic and complex temporal abstraction
methods are very useful in tackling the complexity of analyz-
ing and interpreting huge volumes of time-oriented data. We
have explored the usefulness of our methods by cooperating
with medical experts, who found it easy to capture severe or
stable health conditions of patients. Moreover, these abstrac-
tions can be used for further reasoning or in guideline-based
care for a simplified representation of treatment plans.

Using data abstraction is more than ever a current research
topic [29]. The advantage of abstract descriptions or patterns
is their unified applicability in various applications scenarios,
regardless of the origin of the data to be visualized.

B. Principal Component-Based Analysis

As already mentioned, time-oriented data are often of mul-
tivariate nature. Principal component analysis (PCA) [30] is a
technique frequently applied to reduce the number of variables
and to detect structure in multivariate datasets [31]. As such,
PCA represents another approach to data abstraction. Different
to the previously discussed approaches, which work on the
original data space to derive qualitative data abstractions, PCA
results in a transformation of the original data space into a
different domain – the principal component space. The goal
of this transformation is to make important trends in the data
directly accessible.

The extraction of principal components (PCs) amounts to a
variance-maximizing rotation of the original variable space.
That is, the original data space is transformed in such a
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Fig. 10. Visualization of a climate dataset using a ThemeRiver [32] approach.
The graph depicts five time-dependent variables: summer warmth (blue),
summer days (violet), hot days (green), summer mean temperature (yellow),
and mean of extreme (white) for a period of more than 100 years.

way that the first PC resembles most of the original dataset’s
variance, the second PC most of the remaining variance, and
so on. Identifying these factors leads to a more compressed
description of correlations in the data, and thus, to a better
understanding of underlying features and trends. Since the
PCA provides PCs ordered by their significance, it also
offers an excellent basis for dimension reduction in case of
multidimensional data. Less relevant factors can be omitted
leading to a lossy, but more compact representation.

In principle, PCA does not distinguish between independent
and dependent variables in this process: all variables are
weighted and handled equally. As mentioned before, this
often raises problems in the context of time-oriented data. In
particular, the temporal context gets lost and the interpretation
gets hampered. Therefore, it is preferable to exclude the inde-
pendent variable “time” from PCA. Time and computed PCs
should be rejoined to restore the temporal context afterwards.

To demonstrate the strengths of combining PCA with vi-
sualization we will take a look at a simple example. The
data we consider is related to climate research. The basis of
the example is a meteorological dataset that contains daily
observations of temperature, precipitation, wind, air pressure,
and others for a period of more than 36,500 days (100 years).
To analyze the development of global warming over the last
century, we cooperated with climate researchers to derive a
dataset that focuses on summer weather conditions only [33].
That condensed dataset is on a yearly basis and comprises
five variables: summer warmth (sum of max temperatures for
days with Tmax ≥ 20oC), summer days (number of days with
Tmax ≥ 25oC), hot days (number of days with Tmax ≥ 30oC),
summer mean temperature (mean of daily average temperature
Tavg), and mean of extreme (mean of daily max temperatures
Tmax). All five are quantitative variables that either count
days with specific weather conditions or contain aggregated
temperature information; their strong correlation has been
intended by the climate researchers involved.

The condensed dataset can be visualized with a ThemeRiver
(see Fig. 10). In this graph, constrictions in the river stand for
low data values, which indicate particularly cold summers.
Broad flow snapshots characterize particularly hot summers.
On first impression, a general overview and important charac-
teristics of the dataset are depicted well.

We will now show how PCA and an additional simple bar
chart representation can help to derive further information
from the data. To find major trends in terms of climate

Fig. 11. Bar chart visualization of PC0 over time for the dataset from Fig. 10.
Upward bars represent warmer conditions, whereas downward bars stand for
colder summers (but not necessarily negative temperatures). Frequencies of
data values are mapped onto color to further distinguish typical (blue) and
outlier (orange) years. Major trends are clearly visible: The first third of the
time line is dominated by average warm summers mixed with the coldest
summers; hot summers occur followed by cold summers in the end of this
period; in general, outlier summers cumulate at the end of the time line.

change, PCA was applied to the condensed dataset. Time was
excluded from the analysis to retain the temporal context. The
bar graph in Fig. 11 depicts the first PC only (i.e., PC0),
to which all variables contribute. Bars above the time axis
represent hot summers, whereas bars below the time axis
stand for colder summers. Additionally, a color-coding of PC
frequencies was added to enhance expressiveness: Orange bars
represent outliers, whereas blue bars represent more common
conditions (the colors are not related to temperature). The
combination of PCA and simple visualization succeeds in
presenting major trends in the data very clearly: Average warm
summers dominate the first third of the century, containing
also the coldest summers (orange bars below the time axis).
Hot outlier summers cumulating at the end of the century can
also be detected very easily (orange bars above the time axis).
Moreover, two additional converse trends can be identified:
Hot summers occur followed by colder summers in the end of
this period. In the last third hot summers preponderate, with
the warmest summers at all. The PC visualization in Fig. 11
depicts corresponding trends very well. This demonstrates the
value of PC-based temporal abstractions in the visual analysis
of time-dependent data. Nonetheless, one should recall that
our condensed climate dataset represents a special case where
all variables are strongly correlated. That correlation is the
reason why PC0 separates warm and cold summers so well.
When analyzing arbitrary temporal datasets, further PCs may
be necessary to describe all trends. In such cases, not only
more responsibility of the user is required, but also flexible
mechanisms and controls are needed to determine variables
that should be considered for PCA and to select PCs that
should be visualized. This calls for an integration of analytical
analysis and visualization in a single tool.

As mentioned above, PCA represents an almost completely
automatic approach for temporal data abstraction. The ad-
vantage is that a user can get an abstracted view on the
data very easily. Nonetheless, it is sometimes hard to relate
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Fig. 12. Cluster Calendar View [36], [37] – The plots show cluster
representatives as daily temperature profiles. The calendar view illustrates
by color which days belong to which cluster, i.e., show similar profiles.

patterns visible in PC space to original data variables and the
abstracted views are not always easy to interpret. What can
help in these cases are approaches to enhance readability of
PC-based diagrams by incorporating additional information or
interactive means to support relating PCs to original data [34].
Still, there is room to improve the expressiveness of PC-based
visualization in further research.

C. Clustering
After discussing temporal data abstraction and dimension

reduction with PCA, we now want to take a closer look
on data aggregation. Clustering methods provide a basis for
this purpose. Clustering relates to partitioning a dataset into
subsets exhibiting a certain similarity. The clustering process
also provides an abstraction of the data. Concentrating on the
clusters, rather than on individual data values allows for an
analysis of datasets with a much larger number of tuples.
Appropriate distance or similarity measures lay the ground for
clustering. Distance and similarity measures are profoundly
application dependent. This has lead to a large number of
different measures and clustering algorithms [35]. Selecting
appropriate algorithms is typically difficult. Careful adjustment
of parameters and regular validation of the results are also
essential tasks in the process of clustering. Different to PCA,
the variable “time” is typically included in the clustering
process to reveal clustering with respect to temporal aspects.
The resulting clustering may also lead to a temporal data
abstraction.

Visualization has been frequently applied to validate and
guide the clustering process. Different mining tools provide
cluster algorithms and techniques to visualize the clustering
results. However, most of the techniques for visualizing clus-
ters neglect the temporal context, thus making it difficult to
analyze data with respect to fundamental time-oriented tasks
(e.g., to associate data values and clusters with particular time
steps).

A technique specifically designed for the analysis of clus-
tered time-oriented data is the Cluster Calendar View [36]

Fig. 13. Rectangular View – Visualization of a temporal clustering of
meteorological time-oriented data from the Potsdam observation station.
Thirteen clusters of yearly temperature curves have been extracted from the
data. In this example, changing the periodicity (denoted as decade) from 10
years (left) to 6 years (right) helps in identifying a temporal pattern for cluster
2 (see [37]).

(see Fig. 12). It applies a calendar metaphor to represent the
temporal context. Cluster affiliation is presented indirectly by
color-coding. A line plot presents details on trends subsumed
in selected clusters. Fig. 12 shows an example in the context
of meteorological data. In this example, clusters 7 (light blue)
and 8 (magenta) represent typical daily temperature curves
and hence dominate the calendar. All the other clusters are
more or less atypical and represent outliers. Furthermore,
the color-coded calendar allows to reveal fast changes in
cluster sequences for example in the first part of August.
Brushing techniques provide additional support in the explo-
ration process. For instance, we can highlight clusters that
are similar to a selected cluster. The Cluster Calendar View
facilitates comparison of cluster representatives (overview),
exploration of the values of a single cluster representative
(abstract detail), and exploration of daily and monthly values
of interest (specific details).

In contrast to the Cluster Calendar View, the Rectangular
View [37] depicts cluster information directly, thus allowing
for the display of data for much larger time frames. The
Rectangular View utilizes a tablet-like layout to present clus-
ters as well as cluster centroids. Each cluster is visualized
as a color-coded square. Clusters are positioned on the tablet
from the lower left to the upper right with respect to their
temporal location. Various interaction techniques extend the
functionality. Temporal brushing allows to focus on specific
time steps. Interactive modification of the cluster arrangement
helps in detecting and understanding temporal patterns. In
Fig. 13, for instance, a certain periodicity of cluster 2 can be
observed when placing 6 years per row instead of 10. While
this cluster appears frequently in columns 1 to 3, it is less
existent in all other columns (0, 4, 5). The implication of a
quasi-6-year cycle leads to new explanations and models on
the transition from stable climatic states to new ones for the
previously introduced meteorological dataset.

In this section, we demonstrated the usefulness of analytical
methods to gain insight into larger volumes of time-oriented
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data. Temporal data abstraction aims at gaining qualitative
high-level insights. Principal component analysis and cluster-
ing help in handling larger numbers of variables respectively
tuples in time-oriented data. All three methods applied to large
time-oriented datasets provide different levels of abstraction
and help to reveal major trends in the data.

Many more time-series analysis methods are known in
literature. The information gained by these methods can be
utilized to further support different steps in the analysis and
visualization process to provide additional guidance to users.
For instance, Seo et al. [38] and Müller et al. [34] present
interactive techniques for data selection and attribute mapping
based on information from clustering and PCA; Keogh et
al. [39] integrate mining methods to drive interactive visual
exploration of time-series.

IV. USER-CENTERED ANALYSIS VIA EVENTS

The methods presented in the previous sections are useful
tools to facilitate visualization and analysis of time-oriented
data. We already indicated that this is true only if the methods
are parameterized according to the users’ needs and tasks. This
brings us to the third major point of our discussion – the
user. User interaction is a way to manually parameterize the
described visualization and analysis tools. Many tools provide
an interactive graphical user interface to adjust the parameters
of analytical methods (e.g., via sliders or check boxes). Vi-
sualization views can usually be adjusted via common view
navigation (zoom, pan, rotation) [40], dynamic queries [39],
and brushing [20].

However, it is not always easy for users to find parameter
values that suit the analysis task at hand. Particularly analytical
methods often have parameters that are not self-explanatory,
and hence, are not easy to set. Moreover, the increasing
complexity of visualization methods makes it more difficult
for users to parameterize the visualization properly. What
is needed is some form of support that helps in steering
the visual analysis. A promising concept that addresses the
automatic parameterization of visual representations is event-
based visualization [41]. The thought behind this concept is
to gain benefit from incorporating visualization and event
methodology. Commonly, events are considered happenings
of interest that trigger some automatic actions. This concept
is prevalent in various application fields, including active
databases, software engineering, and software visualization.

In our understanding, events occur if user-defined condi-
tions, which are expressed with respect to entities of a dataset,
become true. The basic idea of event-based visualization
is to let users specify their interests as event types (i.e.,
encapsulations of conditions), to determine if and where these
interests match in the data (i.e., detect event instances), and to
consider detected event instances when generating the visual
representation. This basic procedure requires three main steps
- 1) event specification, 2) event detection, and 3) event
representation. We will give detailed descriptions on each of
these steps in the next paragraphs. Fig. 14 illustrates how
event-related components can be attached to the visualization
pipeline (see [42]), which internally comprises data analysis,
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Fig. 14. Model of event-based visualization – The figure shows the major
steps of event-based visualization (event specification, event detection, and
event representation) attached to the well-known visualization pipeline.

filtering, mapping, and rendering. Data analysis and filtering
can be realized by the methods presented in Section III. How
time-oriented data can be mapped (and rendered) to graphical
representation was shown in Section II.

1) Describing user interests: The event specification is
the step where users describe their interests. To be able to
find actual matches of user interests in the data, the event
specification must be based on formal descriptions. For this
purpose, event formulas have been developed. These formulas
make use of elements of predicate logic, including variables,
predicates, functions, aggregate functions, logical operators,
and quantifiers. The elements may be used in a well defined
way to create valid event formulas. We consider different
variants of event types to facilitate the specification of interests
with respect to relational datasets. Tuple event types can
be used to detect interesting data tuples (e.g., tuples that
show an exceeded threshold) and attribute event types are
useful for finding attributes of interest (e.g., attribute with the
highest average value). For an analysis of time-oriented data,
this alone is not sufficient. Therefore, sequence event types
are also supported. They enable users to specify conditions
of interest regarding temporally ordered sequences of tuples
(e.g., sequence of days with rising stocks). Sequence event
types extend the existing event formulas with sequence-related
notations (inspired by Sadri et al. [43]). A combination of
event types to composite event types is also possible. They
are realized via set operators. Because we rely on extended
predicate logic and set theory, the expressiveness of the in-
troduced event types is limited to these formalisms. However,
the model of event-based visualization is not limited to certain
fixed event types, but can be extended with event types as
required for particular application contexts.

To give a simple example of a sequence event type,
we will formulate the following interest: “Find three
successive days with increases of more than 15% in the
number of influenza infections.” This interest is expressed as
{(x, y, z)date | z.flu ≥ y.flu ∗ 1.15 ∧ y.flu ≥ x.flu ∗ 1.15}.
The first part of the formula defines three variables
(x, y, z)date that are sequenced by date. To express the
condition of interest, these three variables are set into relation
using predicates, functions, and logical connectors.

Certainly, common users will have difficulties in describing
their interests by using event formulas directly. To facilitate the
specification of interests as formal event types, we developed
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Fig. 15. User-centered event specification model – Event types can be
specified by using event formulas directly (left), by parameterizing event
type templates (middle), or by selecting from a predefined application-specific
collection of event types (right). The effort required for event specification
decreases in the same order.

a model for user-centered event specification. This model
provides expert, common, and less-experienced visualization
users with different specification methods. The three different
levels of the model are direct specification, specification by
parameterization, and specification by selection (see Fig. 15).

Although the model is based on the described event formu-
las, the complete functionality of these formulas is available
only to expert users at the level of direct specification.

To ease the event specification for common users, so called
event type templates are provided. Basically, the idea was to
hide the complexity of event formulas from users. Event type
templates use an internal event formula that cannot be changed
directly, but can be adjusted to the users’ needs via easy to
set parameters. An example of an event type template is a
threshold template where the two parameters “threshold” and
“variable” can be set by users. An event instance is detected
once the chosen variable exceeds the set threshold. Templates
are particularly useful to encapsulate sequence event types.
Interests like an increase of a “variable” over a certain “period
of time” can be easily adjusted to the task at hand without
typing entirely new event formulas.

The third level of event specification is based on simple
selection. The event specification by selection addresses not
only less-experienced visualization users, but also users (e.g.,
managers) who seek quick access to relevant information
contained in the data to be analyzed. The idea is to provide
a collection of expert-defined event types that are particularly
tailored to the application context. In the case of time-oriented
data, visualization tasks like identification of certain values
in time or detection of behavioral patterns (e.g., the afore-
mentioned increase in cases of influenza) could be formulated
by domain experts. Predefined event types must be assigned
with expressive labels and descriptions, so that users can easily
select the event types they are interested in. It is also helpful
to enhance the event collection with a semantic structure (e.g.,
by grouping the collection with respect to different user tasks).
Again, to devise such a semantic structure and to describe it
expressively is a task for domain experts.

2) Finding relevant data portions: The event detection step
determines whether the interests defined as event types are
present in the dataset under consideration. Conducting the

event detection results in a set of event instances, which
describe where in the data interesting information is located.
That is, entities that comply with user interest are marked as
event instances. For event detection, the variables used in event
formulas are substituted with concrete entities of the dataset
(tuples, attributes, or sequences of tuples). In a second step,
predicates, functions, and logical connections are evaluated, so
that the event formula as a whole can be evaluated to either
true or false. Since this procedure is very costly in terms of
computation time, efficient methods must be utilized for the
event detection. For detecting interesting tuples and attributes,
capabilities of relational database management systems can
be utilized. The detection of sequence events makes use of
the OPS algorithm [43], which has proved to be efficient
for querying sequenced data. If dynamic data (i.e., data that
change over time) have to be considered, detection efficiency
becomes crucial. Here, incremental detection methods can
help. Such methods operate on a differential dataset, rather
than on the whole data. However, incremental methods also
impose restrictions on possible event types.

3) Considering user interests in visual representations: The
last important step of event-based visualization is the event
representation. The goal of this step is to incorporate detected
event instances (which reflect the interests of the user) into
visual representations. We identified three requirements that
have to be accomplished in this regard:

1) Communicate the fact that something interesting has
been found.

2) Emphasize interesting data among the rest of the data.
3) Convey what makes the data interesting.
The most important requirement is that the visual repre-

sentation must reflect that something interesting is contained
in the data. This is essential for event-based visualization of
time-oriented data. To meet this requirement, easy to perceive
visual cues (e.g., a red frame around the visual representation,
exclamation marks, or annotations) are used. Alpha blending
can be applied to fade out past events. The second requirement
aims at emphasizing those parts of the visual representation
that are of interest. Additionally, the visualization should com-
municate what makes the highlighted parts interesting (i.e.,
what is the particular event type). However, facing arbitrarily
definable event formulas, this last requirement is difficult to
accomplish.

We distinguish two basic possibilities for representing
events. On the one hand, it makes sense to visualize event
instances, rather than the whole dataset. In this way, the focus
is set exclusively on the interests of the user. Since the number
of events is usually smaller than the number of data items,
even large datasets can be analyzed (certainly, the same holds
true for principal components and clusters as presented in
Section III). This way of representing events is referred to
as explicit event representation. On the other hand, adjusting
the parameters of visual representations according to occurred
event instances is a promising alternative. By pursuing what
we call implicit event representation, we can automatically
set visualization parameters according to interests detected
in the data. If we assume that user interests are related to
user tasks and vice versa, implicit event representation can



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 200X 11

help to achieve better targeted visual representations. The big
challenge is to meet the above stated requirements merely by
adapting visualization parameters. Apparently, availability of
adequate visualization parameters is a prerequisite for implicit
event representation.

To illustrate the potential of event-based visualization, we
will discuss an example. We assume a user who has to search
time-dependent human health data for uncommonly high num-
bers of cases of influenza. The task at hand is to detect where
in time these situations have occurred. A possible way to
accomplish this task is to use the TimeWheel technique [12].
However, without event integration the user will be provided
with a TimeWheel that uses a standard parameterization (see
Fig. 16(a)). The standard view shows influenza on the upper
left axis (light green), time is represented on the central
axis. Alpha-blending has been applied by default to reduce
visual clutter. From the TimeWheel in Fig. 16(a) one can
only guess from the labels of the axis showing influenza
that there are higher numbers of cases; the alpha-blending
made the particular lines almost invisible (see question mark).
Several interaction steps are necessary to re-parameterize the
TimeWheel to accomplish the task at hand.

In contrast to that, in an event-based visualization envi-
ronment, the user can specify the interest “Find days with
a high number of cases of influenza.” as an event type
({x | x.flu ≥ 300}) to be considered for the current analysis
task. The event type can be stored and may be reused in
further visualization sessions or by other users. If a new
dataset is opened or if new tuples are added dynamically to a
time-oriented dataset, the event detection is run to determine
whether or not the data conform to the condition expressed
in the event type. If this is the case, event instances are
created for those data portions that fulfill the condition. To
reflect the interest of the data analyst, i.e., to provide an
individually adjusted TimeWheel, the parameters of the visual
representation have to be altered. Parameter changes can
be implemented either as instantaneous actions or gradual
processes (e.g., smooth animation). In our particular example,
we use an action that switches color and transparency of
line segments representing event instances. Days with high
numbers of influenza cases are excluded from alpha-blending
and are drawn in white color. Additionally, the TimeWheel is
rotated (as a whole) such that the axis representing influenza
is moved gradually to an exposed position. The application of
a gradual process is important in this case to support users
in maintaining their mental map of the visual representation.
The result of applying parameter changes as response to event
instances is depicted in Fig. 16(b). This figure illustrates that
event-based visualization eases the visual analysis of time-
oriented data significantly, since the visual representation is
adapted to the current visualization task. In the example,
the identification of days with higher numbers of influenza
infections is easy.

As the previous example indicates, considering user inter-
ests helps to achieve better targeted visual representations.
By combining event-based methodology with visualization
approaches, we give users the opportunity to describe their
interests. The described event types address not only tuples

(b)(a)

Influenza
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!

Fig. 16. Standard vs. automatic parameterization of a TimeWheel – (a)
TimeWheel representing a time-dependent health dataset; the interests of
the user are not considered in the standard parameterization, which aims
at showing main trends. (b) TimeWheel representing the same data; the
user’s interests were recognized in the data and have been emphasized via
highlighted lines and automatic rotation; the presentation is better targeted
for the user’s task at hand.

and attributes of relational data, but also sequences of tuples,
which are important when dealing with time-oriented data. By
using predicate logic, a high level of flexibility is achieved;
a wide range of concrete event types can be imagined. It
must also be mentioned that our approach has been developed
to support directed search, i.e., users know what they are
looking for. Being aware of what users are interested in,
we are able to automatically generate visualizations that are
potentially more helpful for the users’ task at hand than
standard representations. By focusing on relevant parts of the
data, we also achieve another level of data abstraction.

Until now, event-based visualization is not suited to au-
tomatically mine potential events in time-oriented data, i.e.,
to support undirected search, where users have no hypothe-
ses about the data. With a tighter integration of visual and
analytical methods, it should be possible to alleviate this
concern. A second challenge for future work is to find general
guidelines on how to realize parameter changes that indeed
highlight event instances. Because the parameter space of
visualization methods is usually very large and contains many
interdependencies, we have to apply sophisticated methods
(e.g., as suggested by House et al. [44]) to find and test
appropriate parameter settings.

V. CONCLUSION

In this paper, we have investigated the role of time-oriented
data in the context of visually driven data analysis. We have
elaborated on the importance of choosing and parameterizing
visualization techniques and interaction functionality properly
with respect to characteristics of the time domain present in
the data. However, in the light of huge datasets, visualizing
all data in a comprehensible manner without burying possibly
important information becomes more and more challenging.
This challenge can be dealt with by conducting additional
data analysis steps; many time-series analysis approaches
are known in literature. By the examples of temporal data
abstraction, PCA, and clustering, we have illustrated that
analytical methods support the identification of the important
in time-oriented datasets. The third question we addressed
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concerns the integration of the user into the visual analysis
process. We detailed on an approach to emphasize relevant
information, called event-based visualization. This approach
is mainly task-driven and aims at generating better targeted
visual representations of time-oriented data (e.g., by automatic
highlighting of relevant data as well as hiding of less relevant
data).

Nonetheless, much more work has to be conducted in the
future to support a comprehensive visual analysis. This in-
cludes the development of expressive visualization techniques
for all kinds of time-oriented data. Especially multivariate
data in the context of non-linear time domains as well as
interval-based data and temporal uncertainties have to be
considered to an increasing degree. A particularly challenging
problem is to find new ways of describing tasks of the visual
exploration process and to automatically adapt the whole
analysis procedure according to the tasks at hand. This also
includes specific interaction functions for investigating time-
dependencies. For example, Doleisch et al. introduce different
brushing functions that could be useful in this regard [20].
Finally, studying tighter combinations of analysis steps and
event-based visualization (e.g., to detect events on temporal
data abstractions) could result in new powerful means for the
visual analysis of time-oriented data.

Visualization
Analysis

User

Visualization
Analysis
User

Visualization Analysis

User

past present future

Fig. 17. To further advance a visually driven analysis of time-oriented data,
it is necessary to integrate visual, analytical, and user-centered methods more
tightly.

As a conclusion of our paper we would like to take a look
at Fig. 17. Each distinct research field shown in the figure has
yielded many powerful approaches. With this paper we tried
to make a point on a better integration of visual, analytical,
and user-centered methods. We suggest that these aspects
are further advanced in a direction that leads to convergence
of user-centered, visually driven analysis methods for time-
oriented data.
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